wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the line passing through the origin makes angles θ1,θ2,θ3 with the planes XOY,XOZ and ZOX respectively, then prove that cos2θ1+cos2θ2+cos2θ3=2.

Open in App
Solution

Direction cosine are given as cosθ1,cosθ2,cosθ3
Here P(x,y,z) & 0(0,0,0)
OP=(x0)2+(y0)2+(z0)2
OP=x2+y2+z2
r=x2+y2+z2
According to diagonal
cosθ1=xr cosθ2=yr cosθ3=zr
x=rcosθ1 y=rcosθ2 z=rcosθ3
Square & add
x2+y2+z2=r2(cos2θ1+cos2θ2+cos2θ3)
r2=r2cos2θ1+cos2θ2+cos2θ3
So cos2θ1+cos2θ2+cos2θ3=1.

1259790_1055615_ans_adec55e4e23c4cb58845d1dc57db6285.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Direction Cosines and Direction Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon