if the line x2+2xy−35y2−4x+44y−12=0 and 5x+λy−8=0 are concurrent, then the value of λ is.
We have,
Point of intersection of pair of lines represented by
ax2+2hxy+by2+2gx+2fy+c=0
is(hf−bgab−h2,gh−afab−h2)
For the lines
x22xy−35y2−4x+44y−12=0
a=1,b=−35,h=1,g=−2,f=22,c=−12
hf−bgab−h2=1(22)−(−35)(−2)1(−35)−12=22−70−36=−48−36=43
gh−afab−h2=(−2)(1)−(1)221(−35)−12=−24−36=23
pointofintersection=(43,23)
themustsatisfy5x+λy−8=0
5(43)+λ(23)−8=0
20+2λ−24=0
2λ=4
λ=2
Hence, this is the answer.