If the line x + y = 10, divides the line segment joining A(2,4) and B(6,8) in the ratio a : 1, then, a =
where (x1,y1) and (x2,y2) are the coordinates of the endpoints of the line segment.
Applying the formula, we get (1×2+a×6a+1,1×4+a×8a+1)
Also,this point lies on the line x + y = 10, so substitute the points in the equation of the line.
⇒1×2+a×6a+1+1×4+a×8a+1=10
⇒6a+2+8a+4=10(a+1)
⇒14a+6=10a+10
⇒4a=4
⇒a=1