The correct option is A 92√2
x−y=−4k⇒y=x+4k
m=1,c=4k
It is a tangent to the parabola y2=8x⇒a=84=2
c=am⇒4k=21⇒k=12
x−y=−4(12)⇒x−y+2=0
Point of contact p=(am2,2am)=(2,4)
Equation of normal at p(2,4) is y=mx−2am−am3
slope of tangent at p is −1
Equation of normal a p is y=x+6⇒x+y−6=0
Perpendicular distance from (k,2k)=(12,1) to x+y−6=0
∣∣
∣
∣
∣∣12+2−6√2∣∣
∣
∣
∣∣=92√2