If the line y=2√2x cuts the curve x3+y3+6xy+6x2+2y2+5x+5y+1=0 at the point A,B,C then OA.OB.OC is equal to a(1−16√b)c. Find a+b+c.
Given Equation of curve:
x3+y3+6xy+6x2+2y2+5x+5y+1=0
Substituting y=2√2x in the above curve
⇒(16√2+1)x3+(22+12√2)x2+(5+10√2)x+1=0
⇒ Product of roots =−da=−116√2+1=1−16√2511
OA=√x21+(2√2x1)2=√9x21=3x1
OA.OB.OC=27x1x2x3
=27(1−16√2)511=a(1−16√b)c
So,
a+b+c=27+2+511=540