Given: Line y=mx+1 …(i) is tangent of parabola y2=4x …(ii).
From (i), we get x=y−1m …(iii)
By solving (ii) and (iii),
y2=4(y−1m)
⇒ my2−4y+4=0 …(iv)
So, If line (i) is tangent of parabola (ii), then (iv) should have only one solution.
i.e., both roots of the quadratic solution should be equal.
If ax2+bx+c has equal roots, then discriminant b2−4ac=0
In (iv), a=m,b=−4,c=4
⇒(−4)2=4⋅m⋅4
⇒16=16m
⇒ m=1
Hence, the value of m is 1.