If the line y=mx+7√3 is normal to the hyperbola x224−y218=1, then a value of m is
A
2√5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
√52
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√152
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2√5 x224−y218=1⇒a=√24 and b=√18 We know parametric form of normal to hyperbola is axcosθ+bycotθ=a2+b2⇒√24xcosθ+√18ycotθ=42Atx=0,y=42√18⋅cotθ=42√18tanθ⋯(i)Fory=mx+7√3y=7√3⋯(ii) From (i) and (ii) 42√18tanθ=7√3⇒tanθ=√32⇒sinθ=±√35 Also, slope of parametrical normal −acosθbcotθ=m⇒m=−√43sinθ=−2√5 or 2√5