If the line y = mx does not intersect the circle
(x+10)2+(y+10)2=180
then write the set of values taken by m
y=mx does not intersect the circle
(x+10)2+(y+10)2=180
Now, (x+10)2+(mx+10)2=180x2+100+20x+m2x2+100+20mx=180x2+m2x2+20mx+20x+20=0x2(1+m2)+20x(m+1)+20=0
Since y = mx does not intersect so
b2−4ac<0(20(m+1))2−4(1+m)2(20)<0400(m+1)2−80(1+m2)<05m2+5+10m−1−m2<04m2+10m+4<04m2+8m+2m+4<04m(m+2)+2(m+2)<0(m+2)(4m+2)<0⇒m+2<0 and 4m+2>0m>−2 and m<−12
Its not possible
⇒m+2>0 and 4m+2<0⇒m>−2 and m<−12⇒−2<m<−12⇒mϵ(−2,−12)