The correct option is C 4√2
y=x ...(1)
y=2x3+6x2+x−4 ...(2)
Equating eqn (1) and (2), we get
x3+3x2−2=0 ...(3)
Coordinates of point
A≡(x1,x1) (∵xi=yi)
B≡(x2,x2)
C≡(x3,x3)
Here
OA=√(x1−0)2+(x1−0)2=√2x1
OB=√2x2
OC=√2x3
|OA.OB.OC|=|√2x1×√2x2×√2x3|=2√2x1.x2.x3
Here x1.x2.x3=−da=−(−2)1=2 from eqn (3)
Putting this value, we get
|OA.OB.OC|=2√2×2=4√2