The given lines are
2x−3y+λ=0,3x−4y−13=0 and 8x−11y−33=0.
Let (h,k) be the point of concurrency,
Now, solving
3h−4k−13=0
8h−11k−33=0
We get
h=11,k=5
Putting this in third line equation, we get
2(11)−3(5)+λ=0
⇒λ=−7∴|λ|=7
Alternate method:
All three lines are concurrent if
∣∣
∣∣2−3λ3−4−138−11−33∣∣
∣∣=0⇒2(132−143)+3(−99+104)+λ(−33+32)=0
⇒λ=−7∴|λ|=7