1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Asymptotes
If the lines ...
Question
If the lines
(
a
−
b
−
c
)
x
+
2
a
y
+
2
a
=
0
,
2
b
x
+
(
b
−
c
−
a
)
y
+
2
b
=
0
and
(
2
c
+
1
)
x
+
2
c
y
+
(
c
−
a
−
b
)
=
0
are concurrent, then prove that either
a
+
b
+
c
or
(
a
+
b
+
c
)
2
+
2
a
=
0
Open in App
Solution
(
a
−
b
−
c
)
x
+
2
a
y
+
2
a
=
0
2
b
x
+
(
b
−
c
−
a
)
y
+
2
b
=
0
(
2
c
+
1
)
x
+
2
c
y
+
(
c
−
a
−
b
)
=
0
Since lines are concurrent, determinant should be:
∣
∣ ∣ ∣
∣
(
a
−
b
−
c
)
2
a
2
a
2
b
(
b
−
c
−
a
)
2
b
(
2
c
+
1
)
2
c
(
c
−
a
−
b
)
∣
∣ ∣ ∣
∣
=
0
=
(
a
−
b
−
c
)
[
(
b
−
c
−
a
)
(
c
−
a
−
b
)
−
(
2
b
)
(
2
c
)
]
−
2
a
[
2
b
(
c
−
a
−
b
)
−
2
b
(
2
c
+
1
)
]
+
2
a
[
(
2
b
)
(
2
c
)
−
(
b
−
c
−
a
)
(
2
c
+
1
)
]
=
(
a
−
b
−
c
)
[
b
c
−
/
a
b
−
b
2
−
c
2
+
/
a
c
+
b
c
−
/
a
c
+
a
2
+
/
a
b
−
4
b
c
]
−
2
a
[
2
b
c
−
2
a
b
−
2
b
2
−
4
b
c
−
2
b
]
+
2
a
[
4
a
b
−
2
b
c
−
b
+
2
c
2
+
c
+
2
a
c
+
a
]
=
(
a
−
b
−
c
)
[
a
2
−
b
2
−
c
2
−
2
b
c
]
−
2
a
[
−
2
b
c
−
2
a
b
−
2
b
2
−
2
b
]
+
2
a
[
2
b
c
−
b
+
c
+
a
+
2
c
2
+
2
a
c
]
=
a
2
+
2
a
+
b
2
+
2
b
c
+
2
a
b
+
c
2
+
2
a
c
=
(
a
2
+
b
2
+
c
2
+
2
a
b
+
2
b
c
+
2
a
c
)
+
2
a
(
a
+
b
+
c
)
2
+
2
a
=
0
.
Suggest Corrections
0
Similar questions
Q.
If the lines
(
a
−
b
−
c
)
x
+
2
a
y
+
2
a
=
0
,
2
b
x
+
(
b
−
c
−
a
)
y
+
2
b
=
0
and
(
2
c
+
1
)
x
+
2
c
y
+
c
−
a
−
b
=
0
are concurrent, then find
a
+
b
+
c
Q.
Prove that the lines
a
x
+
b
y
+
c
=
0
,
b
x
+
c
y
+
a
=
0
and
c
x
+
a
y
+
b
=
0
are concurrent
a
3
+
b
3
+
c
3
=
3
a
b
c
or if
a
+
b
+
c
=
0
.
Q.
If the equations
(
b
+
c
)
x
+
(
c
+
a
)
y
+
(
a
+
b
)
=
0
,
c
x
+
a
y
+
b
=
0
and
a
x
+
b
y
+
c
=
0
are consistent, then show that either
a
+
b
+
c
=
0
or
a
=
b
=
c
.
Q.
If the lines
x
+
2
a
y
+
a
=
0
,
x
+
3
b
y
+
b
=
0
and
x
+
4
c
y
+
c
=
0
are concurrent, then
a
,
b
,
c
.
Q.
If the lines
a
x
+
b
y
+
c
=
0
,
b
x
+
c
y
+
a
=
0
and
c
x
+
a
y
+
b
=
0
a
≠
b
≠
c
are concurrent then the
point of concurrency is
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Diameter and Asymptotes
MATHEMATICS
Watch in App
Explore more
Asymptotes
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app