The correct option is C 92
Here we can take four vectors
For line x−12=y+13=z−14:
→a=^i−j+k
→b=2i+3j+4k
For line x−31=y−k2=z1:
→c=3i+kj
→d=i+2j+k
If these lines intersect, then (→a−→c),→b and →d should be coplanar
∴[(→a−→c),→b,→d]=0
∣∣
∣∣2k+1−1234121∣∣
∣∣=0
⇒2(−5)−(k+1)(−2)+(−1)(1)=0
⇒(k+1)(2)=11
⇒k=92