The given lines are x−12=y+13=z−14 and x−31=y−k2=z4
x−12=y+13=z−14=λ .......... (i)
∴P(2λ+1,3λ−1,4λ+1) is any point on (i)
Also, let x−31=y−k2=z4=μ ......... (ii)
∴Q(μ+3,2μ+k,4μ) is any point on (ii)
The two lines will intersect, if
2λ+1=μ+3
3λ−1=2μ+k
4λ+1=4μ ........ (iii)
μ=2λ−2 ........ (iv)
3λ−2μ=k+1 .......... (v)
Now, substituting (iv) in (iii),
4λ+1=4(2λ−2)
4λ+1=8λ−8
4λ=9
λ=94
Substituting the value of λ in (iv),
μ=2(94)−2
⇒μ=92−2
⇒μ=52
Substititing the value of λ and μ in equation (v), we get
3λ−2μ=k+1
⇒3(94)−2(52)=k+1
⇒274−5=k+1
⇒274−6=k
⇒k=34
Thus, k=34