The correct option is C 3
Given lines:
L1: x1=y2=z3L2: x−13=y−2−1=z−34L3: x−a3=y−12=z−2b
Let a point on line L1 be (λ,2λ,3λ) and a point on line L2 be (3μ+1,−μ+2,4μ+3)
At point of intersection:
λ=3μ+1⋯(i)2λ=−μ+2⋯(ii)3λ=4μ+3⋯(iii)
Solving (i) and (ii), we get
λ=1,μ=0
So, point of intersection is (1,2,3) lie on line L3 for concurrency
⇒1−a3=12=1b
⇒b=2, a=−12
∴b−2a=3