The correct option is
A −q1+pGiven pair of lines
px2−qxy−y2=0
x=qy±√q2y2+4py22p
2px=qy±√(q2+4p)y2
2px=(q±√q2+4p)y
y=2pq+√q2+4px and 2pq−√q2+4px
On comparing above both eq with y=mx+c we get
m1=2pq+√q2+4p and m3=2pq−√q2+4p
Angle between x−axis⇒y=0 with slope 0 and y=2pq+√q2+4px is given by
tanα=∣∣∣m1−m21+m1m2∣∣∣
tanα=∣∣
∣
∣
∣
∣∣2pq+√q2+4p−01+0∣∣
∣
∣
∣
∣∣
tanα=2pq+√q2+4p
Angle between x−axis⇒y=0 with slope 0 and y=2pq−√q2+4px is given by
tanβ=∣∣∣m3−m21+m3m2∣∣∣
tanβ=∣∣
∣
∣
∣
∣∣2pq−√q2+4p−01+0∣∣
∣
∣
∣
∣∣
tanβ=2pq−√q2+4p
tan(α+β)=tanα+tanβ1−tanαtanβ
tan(α+β)=2pq+√q2+4p+2pq−√q2+4p1−(2pq+√q2+4p)(2pq+√q2+4p)
tan(α+β)=2p(q−√q2+4p)+2p(q+√q2+4p)q2−q2−4p1−(4p2q2−q2−4p)
tan(α+β)=2p(q−√q2+4p+q+√q2+4p)−4p−4p2
tan(α+β)=2p(2q)−4p(1+p)
tan(α+β)=4pq−4p(1+p)
tan(α+β)=−q1+p