If the lines p1 x+q1 y=1, p2 x+q2 y=1 and p3 x+q3 y=1 be concurrent, show that the points (p1, q1), (p2, q2) and p3, q3) are coolinear.
If the lines are concurrent, then the lines have common point of intersection.
The given line are
p1 x+q1 y=1 ...(1)
p2 x+q2 y=1 ...(2)
p3 x+q3 y=1 ...(3)
Solving (1) and (2)
x=1−q1yp1
=p2(1−q1, yp1)+q2y=1
p2=p2q1y+p1q2y=p1
y=p1p2p1p2−p2q1
⇒ x=1−q1(p1−p2p1p2−p2q1)p1
Putting x, y in (3)
p3[(p1q2−p2q1)−q1p1−q1p2][p1q2−p2q1]+q3p1(p1−p2)=1
(p1p3q2−p2p3q1−p1p3q1+p2p3q1)+q3p21−q3p1p2=1
(p1p3q2−p1p3q1)(p1q2−p2q1)+q3p21−q3p1p2=1
p21p3q22−p1p2p3q1q2−p21p3q2q1+p1p2p3q21+q3p21−q3p1p2=1 (1)
Also if (p1q1)(p2p2)(p3p3) are collinear
Then,
p1(q2−q3)+p2(q3−q1)+p3(q1−q3)=0
From (1)
p1[p1p3q22−p2p3q1q2−p1p3q1q2+p2p3q21+q3p1−q3p2]=1
p1[p3q2 (p1p2−p2q1)−p3q1(p1p2−p2q1)+q3(p1−p2)]=1
Hence, the points are collinear.