The correct option is A (1,∞)
Given lines are x+y=|a| and ax−y=1
Let the point of intersection be P
y=|a|−x⇒ax+x−|a|=1⇒x=1+|a|1+a⇒y=a|a|−11+a
Now, we get
P=(1+|a|1+a,a|a|−11+a)
This point will lie in first quadrant iff
1+|a|1+a>0, a|a|−11+a>0⇒1+a>0 (∵1+|a|>0)⇒a>−1
Now,
a|a|−1>0 (∵1+a>0)⇒a|a|>1
Since, |a|≥0 so a should be positive, we get
a2>1∴a∈(1,∞)