m,n,r are in H.P. implies n=2mrm+r
(m+1)th , (n+1)th and (r+1)th terms of an A.P are in G.P implies
(a+md)×(a+rd)=(a+nd)2
⇒a2+ard+amd+mrd2=a2+2and+n2d2
⇒d2(n2−mr)=(am+ar−2an)d
So, ad=n2−mrm+r−2n
From the first condition, m+r=2mrn
So, ad=n3−mnr2mr−2n2=−n2
Thus, we get k to be −2