The correct option is C 10
Let the first term be 'a' and common difference be 'd'
tm=1n
a+(m−1)d=1n ...............(1)
tn=1m
a+(n−1)d=1m ...............(2)
Subtracting (2) from (1), we get:
a+(m−1)d=1n
a+(n−1)d=1m
________________________
[(m−1)−(n−1)]d=1n−1m
⇒(m−1−n+1)d=m−nmn
⇒(m−n)d=(m−n)mn
d=1mn
Substituting d=1mn in (1), we get:
a+(m−1)d=1n
⇒a+(m−1)1mn=1n
⇒a=1n−(m−1)mn=m−m+1mn
a=1mn
t10mn=a+(10mn−1)d
=1mn+(10mn−1)mn
=1+10mn−1mn=10mnmn
t10mn=10
Thus, (10mn)th term is 10