If the mapping f(x)=ax+b,a>0 maps [ā1,1] onto [0,2] then cot[cotā17+cotā18+cotā118] is equal to
A
f(−1)
No worries! Weāve got your back. Try BYJUāS free classes today!
B
f(0)
No worries! Weāve got your back. Try BYJUāS free classes today!
C
f(1)−1
No worries! Weāve got your back. Try BYJUāS free classes today!
D
f(1)+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Df(1)+1 f(−1)=0⇒−a+b=0f(1)=2⇒a+b=2⇒b=1,a=1⇒f(x)=x+1cot[tan−117+tan−118+tan−1118]=cot[tan−1(1555)+tan−1(118)]=cot[tan−1(65195)]=cot[tan−1(13)]=3=f(1)+1