wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the matrix A=x321y422z,xyz=60 and 8x+4y+3z=10, then A(adjA) is equal to

A
640006400064
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
880008800088
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
680006800068
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
350003500035
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 680006800068
$\because A\cdot dj(A)=\left| A \right| I\quad $$\therefore \left| A \right| =xyz-8x-3(z-8)+2(2-2y)$$=60-20+28=68\quad $$\quad \therefore A\cdot adj(A)=68\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$∵A⋅dj(A
Adj(A)=|A|I
|A|=xyz8x3(z8)+2(22y)
=6020+28=68
Aadj(A)=68100010001=680006800068

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transpose of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon