If the matrix A=(02Kā1) satisfies A(A3+3I)=2I, then the value of K is
A
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−1
No worries! Weāve got your back. Try BYJUāS free classes today!
C
1
No worries! Weāve got your back. Try BYJUāS free classes today!
D
−12
No worries! Weāve got your back. Try BYJUāS free classes today!
Open in App
Solution
The correct option is A12
Given : A=(02K−1)
characteristic equation is |A–xI|=0 ⇒∣∣∣0−x2K−1−x∣∣∣=0 ⇒x(x+1)−2K=0 ⇒x2+x−2K=0
Every square matrix satisfies its own characteristic equation. ∴A2+A−2KI=0 ⇒A2=2KI−A
Now, A4=A2⋅A2 ⇒A4=(2KI–A)(2KI–A) ⇒A4=4K2I−4KA+A2 ⇒A4=4K2I−4KA+2KI−A ⇒A4=(4K2+2K)I−(4K+1)A ⇒A4+(4K+1)A=(4K2+2K)I⋯(1)
and given that A4+3A=2I⋯(2)
Comparing the coefficients from (1) and (2), we get 4K+1=3⇒K=−12
and 4K2+2K=2 ⇒2K2+K−1=0 ⇒(2K−1)(K+1)=0 ⇒K=12,−1 ∴K=12