If the maximum and minimum values of the determinant
∣∣
∣
∣∣1+cos2xsin2xcos2xcos2x1+sin2xcos2xcos2xsin2x1+cos2x∣∣
∣
∣∣
are α and β respectively, then which of the following is correct?
Δ=∣∣
∣
∣∣1+cos2xsin2xcos2xcos2x1+sin2xcos2xcos2xsin2x1+cos2x∣∣
∣
∣∣
Apply R1→R1−R2, R2→R2−R3
Δ=∣∣
∣
∣∣1−1001−1cos2xsin2x1+cos2x∣∣
∣
∣∣
=1(1+cos2x+sin2x)+1(0+cos2x)
⇒Δ=2+cos2x−1≤cos2x≤1⇒1≤2+cos2x≤3∴α=3,β=1