If the mean of the following frequency distribution is 188, find the missing frequencies x and y, if the sum of all frequencies is 100.
Class | 0–80 | 80–160 | 160–240 | 240–320 | 320–400 |
Frequency | 20 | 25 | x | y | 10 |
Here, class size, h=80
Let the assumed mean, A be 200.
Class | Mid-Values(xi) | Frequency(fi) | di=xi−A=xi−200 | ui=xi−20080 | fiui |
0−80 | 40 | 20 | −160 | −2 | −40 |
80−160 | 120 | 25 | −80 | −1 | −25 |
160−240 | 200 | x | 0 | 0 | 0 |
240−320 | 280 | y | 80 | 1 | y |
320−400 | 360 | 10 | 160 | 2 | 20 |
∑fi=x+y+55 | ∑fiui=−45+y |
∑fi=x+y+55=100 (Given)
⇒x+y=45……(i)
We know
Mean =A+h×∑fiui∑fi
∴200+80×−45+y100=188 (Given)
⇒−45+y100=188−20080=−0.15
⇒−45+y=−15
⇒y=45−15=30
Substituting the value of yin eq.(i), we get
x+30=45
⇒x=45−30=15
Thus, the missing frequencies x and y are 15 and 30 respectively.