¯x=√3⋅^i+^j=(√3,1)
¯y=a^i+√3^j=(a,√3)
∴ Here ¯x^¯y=π3
∴cos(¯x^¯y)=cos(π3)
∴¯x⋅¯y|¯x||¯y|=12
∴(√3,1)⋅(a,√3)√3+1⋅√a2+3=12
√3a+√32√a2+3=12
∴√3(a+1)=√a2+3 ..(1)
Now squaring on both sides.
∴3(a2+2a+1)a2+3
∴2a2+6a=0
2a(a+3)=0
∴a=0 or a=−3
Here a=−3 does not satisfy result (1)
∴a=0.