If the median of the following frequency distribution is 46. find the absolute difference of missing frequencies
Variable
10−20
20−30
30−40
40−50
50−60
60−70
70−80
Total
Frequency
12
30
f1
65
f2
25
18
229
Open in App
Solution
Class Interval
Frequency
C.F.
10−20
12
12
20−30
30
42
30−40
f1
42+f1
40−50
65
107+f1
50−60
f2
107+f1+f2
60−70
25
132+f1+f2
70−80
18
150+f1+f2
Let the frequency of the class 30−40 be f1 and that of the class 50−60 be f2. The total frequency is 229. 12+30+f1+65+f2+25+18=229 ⇒f1+f2=79 It is given that median is 46. Clearly 46 lies in the class 40−50. So, 40−50 is the median class ∴L=40,h=10,f=65 and C=42+f1,N=229 Median =L+N2−Cf×h ⇒46=40+2292−(42+f1)65×10 ⇒46=40+145−2f113 ⇒6=145−2f113⇒2f1=67 ⇒f1=33.5 or 34 Since f1+f2=79 ⇒f2=45 Hence f1=34 and f2=45