Question 8 If the medians of a ΔABC intersect at G, then show that ar(ΔAGB)=ar(ΔBGC)=ar(ΔAGC)=13ar(ΔABC).
Open in App
Solution
We know that, a median of a triangle divides it into two triangles of equal area. InΔABC, AD is a median. ∴ar(ΔABD)=ar(ΔACD) ....(i) In ΔBGC, GD is a median. ∴ar(ΔGBD)=ar(ΔGCD) ....(ii) On subtracting Eq. (ii) from Eq. (i), we get, ar(ΔABD)−ar(ΔGBD)=ar(ΔACD)−a(ΔGCD) ⇒ar(ΔAGB)=ar(ΔAGC) ...(iii) Similarly, ar(ΔAGB)=ar(ΔBGC) ...(iv) From Eqs. (iii) and (iv), ar(ΔAGB)=ar(ΔBGC)=ar(ΔAGC) ...(v) Now, ar(ΔABC)=ar(ΔAGB)+ar(ΔBGC)+ar(ΔAGC) ⇒ar(ΔABC)=ar(ΔAGB)+ar(ΔAGB)+ar(ΔAGB) [From Eq. (v)] ⇒ar(ΔABC)=3ar(ΔAGB) ⇒ar(ΔAGB)=13ar(ΔABC) ...(vi) From Eqs. (v) and (vi) ar(ΔBGC)=13ar(ΔABC) ad ar(ΔAGC)=12ar(ΔABC) Hence proved.