If the mid-points of sides of quadrilateral are joined in order,prove that the area of parallelogram so formed will be half of area of the given quadrilateral.
Open in App
Solution
We need to prove that (ΔPOQ)(ΔSOR)=(ΔPOS)(ΔQOR) as area.
We draw the perpendiculars SD and QE to the diagonal PR. Then the area of triangles are ΔPOQ=12PO.QE ΔQOR=12OR.QE ΔPOS=12OP.SD ΔROS=12OR.SD Therefore ΔPOQ.ΔSOR=(12OR.SD)(12PO.QE)=14(OR)(SD)(OP)(QE) ΔQOR.ΔPOS=(12OR.QE)(12OP.SD)=14(OR)(SD)(OP)(QE) Therefore ΔPOQ.ΔSOR=ΔQOR.ΔPOS