Given: A quadrilateral
ABCD in which the mid-point of the sides of it are joined in order of form parallelogram
PQRS
To prove: ar(||gmPQRS)=12ar(ABCD)
Construction: Join BD and draw perpendicular from A and BD which intersect SR and BD at X and Y respectively.
Proof: In ΔABD, S and R are the mid-points of sides AB and AD respectively.
∴SR||BD
⇒SX||BY
⇒X is the mid-point oy AY [Converse of mid-point theorem]
⇒AX||XY...........(1)
(∵S is the mid-point of AB and SX||BY)
SR=12BD.......(2) (∵ Mid-point theorem)
Now, ar(ΔABD)=12×BD×AY
ar(ΔASR)=12×SR×AX
ar(ΔASR)=12×(12BD)×(12AY)SR×AX (Using (1) and (2))
ar(ΔASR)=14×(12BD×AY) (Using (1) and (2))
⇒ar(ΔASR)=14×(ΔABD).......(3)
Similarly,
⇒ar(ΔCPQ)=14×(ΔCBD)...........(4)
⇒ar(ΔBPS)=14×(ΔBAC)...........(5)
⇒ar(ΔDRQ)=14×(ΔDAC)...........(6)
Adding (3),(4),(5) and (6), we get,
ar(ΔASR)+ar(ΔCPQ)+ar(ΔBPS)+ar(ΔDRQ)
=14ar(ΔABD)+14ar(ΔCBD)+14ar(ΔABC)+14ar(ΔDAC)
=14[ar(ΔABD)+ar(ΔCBD)+ar(ΔBAC)+ar(ΔDAC)]
=14[ar(ABCD)+ar(ΔABCD)[
=14×2ar(ABCD)
=12×2ar(ABCD)
ar(ΔASR)+ar(ΔCPQ)+ar(ΔBPS)+ar(ΔDRQ)
⇒ar(ABCD)−ar(||gmPQRS)=12ar(ABCD)
⇒ar(||gmPQRS)=ar(ABCD)−12ar(ABCD)
⇒ar(||gmPQRS)=dfrac12ar(ABCD)
Hence, proved.