The correct option is
A (2,53)(−2,3),(4,−3) and (4,5),
Given:- The vertices of
ΔABC are
A(x1,y1),B(x2,y2) and
C(x3,y3).The mid point of AB=P(−2,3),BC=Q(4,−3) and AC=R(4,5).
To find out the coordinates of A,B and C
Let us apply mid point formula.
∴P(−2,3)=(x1+x22,y1+y22,)
⇒x1+x2=−4&y1+y2=6,
Q(4,−3)=(x2+x32,y2+y32,)
⇒x2+x3=8&y2+y3=−6, and R(4,5)=(x3+x12,y3+y12,)
⇒x3+x1=8&y3+y1=10.
Adding the above equations,
2(x1+x2+x3)=12
⇒x1+x2+x3=6 and 2(y1+y2+y3)=10
⇒(y1+y2+y3)=5.
We know that the coordinates of the centroid is
G(x,y)=(x1+x2+x33,y1+y2+y33)=(63,53)=(2,53).