Let the equation of ellipse is
x2a2+y2b2=1, where a>b
The minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis.
∴△ABC is an equilateral
∴AB=BC=CA
Now,
AB=AC
⇒AB2=AC2
⇒(0−0)+(b+b)2=(0−a)2+(b−0)2
⇒(2b)2+(−a)2+(b)2
⇒4b2=a2+b2
⇒3b2=a2
⇒b2=a23 ...(i)
Now,
⇒b2=a2(1−e2)
⇒a23=a2(1−e2)[Using equation (i)]
⇒13=1−e2
e2=1−13
e2=23
e=√23