Let A≡(1,2) and B≡(a,b)
Midpoint of (1,2) and (a,b) will be (1+a2,2+b2) which lies on 2y=x
∴1+a2=2+b
⇒a=2b+3⋯(1)
Since, line AB and line 2y=x are perpendicular.
⇒ Slope of line AB×12=−1
⇒ Slope of line AB=−2
⇒2−b1−a=−2
⇒2a=4−b⋯(2)
Solving equations (1) and (2)
We get a=115 and b=−25
⇒5(a+b)=9
Alternate Solution:
Using the image formula
a−11=b−2−2=−2(1−2⋅2)12+22⇒a=11/5; y=−2/5
So 5(a+b)=9