If the normal at a point P to the hyperbola meets the transverse axis at G, and the value of SGSP is 2 then the eccentricity of the hyperbola is (where S is the focus of the hyperbola)
Given hyperbola is,
x2a2−y2b2=1
Let
P(θ)≡(a sec θ,b tan θ)
Equation of normal at Pθ is given by,
acosθ.x+b.cot θ.y=a2+b2
This normal meets transverse axis at G(x1,0)
∴acosθ x1+0=a2+b2
∴ G≡[a2+b2a cosθ,0]
Focus S≡(ae,0)
SP=√a2(e−sec θ)2+(b tan θ)2
=√a2e2+a2sec2θ−2a2.e sec θ+b2tan2θ
=√a2+b2+a2sec2θ−2a2.e sec θ+b2tan2θ
=√a2+a2sec2θ−2a2.e sec θ+sec2θ.a2(e2−1)
=√a2−2a2e sec θ+sec2θa2.e2
√(e.a.sec θ−a)2
=e a secθ−a
∴ SP=e.a secθ−a
SG=a2+b2a cosθ−ae=a2e2acosθ−ae(Since a2e2=a2+b2)
=ae2.secθ−ae
=e[ae secθ−a]
∴SGSP=e.(ae secθ−a)(ae secθ−a)=e=2