If the normal at any given point P on ellipse x2a2+y2b2=1 meets its auxiliary circle at Q and R such that ∠QOR=90∘, where O is centre of ellipse, then
2(a2−b2)2=a4 sec2 θ+a2b2 cosec2 θ
a4+2b2≥5a2b2+2a3b
Homogenizing auxiliary circle with normal at P
x2+y2=a2(ax sec θ−by cosec θ)2(a2−b2)2
∠QOR=90∘⇒ −1+a4 sec2 θ(a2−b2)2−1+a2b2 cosec2 θ(a2−b2)2=0
⇒2(a2−b2)2=a4 sec2θ+a2b2 cosec2 θ
⇒2(a2−b2)2=a4 (1+tan2θ)+a2b2 (1+cot2 θ)
⇒a4−5a2b2+2b4=a4 tan2θ+a2b2 cot2θ
Using AM ≥ GM,
a4 tan2θ+a2b2 cot2θ=a4 tan2θ+a2b2tan2θ≥2a3b