The correct option is D b2:a2
Let P≡(acosθ,bsinθ)
Thus equation of normal to the given ellipse at 'P' is given by,
axsecθ−bycosecθ=a2−b2
∴G≡((a−b2a)cosθ,0),g≡(0,(b−a2b)sinθ)
Thus PG=√b4a2cos2θ+b2sin2θ=ba√b2cos2θ+a2sin2θ
and Pg=√a2cos2θ+a4b2sin2θ=ab√b2cos2θ+a2sin2θ
∴PG:Pg=b2a2