The correct option is C b2 : a2
Let P(a cosθ,b sinθ) be a point on the ellipse x2a2+y2b2=1. Then the equation of the normal at P is ax secθ−bycosec θ=a2−b2
It meets the co-ordinate axes at G(a2−b2acos θ,0) and g(0,−a2−b2bsinθ).
⇒PG2=(a cos θ−a2−b2acos θ)2+b2sin2θ
=b2a2(b2cos2θ+a2sin2θ)
and Pg2=a2b2(b2cos2θ+a2sin2θ),∴PG:pg=b2:a2.