The correct option is
B −2/3Normal at the point P(theta) to the ellipse x²14+y²5=1 intersects it again at the point Q(2 θ).
we know, standard equation of ellipse is
x²a²+y²b²=1 compare it with given equation
so, a²=14 then, a=√14
b²=5 then, b=√5
now equation of normal passing through point P(θ) is given by,
axcosθ−bysinθ=a²−b².
or, √14xcosθ−√5ysinθ=14−5=9 ....(1)
it again meets the curve at the point Q(2θ)
so, Q(2θ)=(√14cos2θ,√5sin2θ)
now, put it in equation (1),
or, 14cos2θcosθ−5sin2θsinθ=9
or, 14(2cos²θ−1)cosθ−10sinθcosθsinθ=9
or, 28cosθ−14secθ−10cosθ=9
or, 18cosθ−14cosθ=9
or, 18cos²θ−14−9cosθ=0
or, 18cos²θ−21cosθ+12cosθ−14=0
or, 3cosθ(6cosθ−7)+2(cosθ−7)=0
or, (3cosθ+2)(6cosθ−7)=0
or, cosθ=−23