The correct option is D cosθ=−23
Equation of ellipse is
x214+y25=1
P(θ)≡(√14cosθ,√5sinθ)
The normal at P will be
√14xcosθ−√5xsinθ=14−5⇒√14xcosθ−√5xsinθ=9
If it meets the curve again at Q(2θ)≡(√14cos2θ,√5sin2θ), then
√14(√14cos2θ)cosθ−√5(√5sin2θ)sinθ=9
⇒14(2cos2θ−1)cosθ−5(2cosθ)=9
⇒28cos2θ−14−10cos2θ=9cosθ
⇒18cos2θ−9cosθ−14=0
⇒(6cosθ−7)(3cosθ+2)=0
⇒cosθ=−23 or cosθ=76 (Not possible)
Hence, cosθ=−23