The correct option is C a2(e4sec2θ−1)
The equation of the normal at (asecθ,btanθ) to the given hyperbola is
axcosθ+bycotθ=(a2+b2)
This meets the transverse axis (i.e) at G. So, the coordinates of G are {a2+b2asecθ,0}
The coordinates of the vertices A and A′ are A(a,0) and A′(−a,0) respectively
∴AG.A′G=(−a+a2+b2asecθ)(a+a2+b2asecθ)
⇒AG.A′G=(−a+ae2secθ)(a+ae2secθ)
=a2(e4sec2θ−1)