Equation of ellipse : 5x2+14y2=70
⇒x214+y25=1
Equation of normal at θ is
(asecθ)x−(bcosecθ)y=a2−b2⇒√14xcosθ−√5ysinθ=14−5⇒√14xcosθ−√5ysinθ=9
Above line also passes through 2θ
Q=(√14cos2θ,√5sin2θ)
Putting point Q in the equation of normal, we get
√14(√14cos2θ)cosθ−√5(√5sin2θ)sinθ=9⇒14cos2θcosθ−10sinθcosθsinθ=9⇒14(2cos2θ−1)−10cos2θ−9cosθ=0⇒18cos2θ−9cosθ−14=0
⇒(3cosθ+2)(6cosθ−7)=0
As cosθ∈[−1,1], so
cosθ=−23∴|3cosθ|=2