If the normal to the curve y2=5x−1 at the point (1,−2) is of the form ax−5y+b=0, then a−b is
Open in App
Solution
dydx=(52y) (dydx)(1,−2)=−54 ∴ Equation of normal at the point (1,−2) is ∴4x−5y−14=0⋯(1)
Given, ax−5y+b=0⋯(2)
On comparing (1) and (2), we get a=4 and b=−14 ∴a−b=18