If the normal to the curve y(x)=∫x0(2t2−15t+10)dt at a point (a,b) is parallel to the line x+3y=−5,a>1 then the value of |a+6b| is equal to
Open in App
Solution
y′(x)=(2x2−15x+10)
at point P(a,b) slope of normal is −1/3 ∴3=(2a2−15a+10)⇒2a2−15a+7=0⇒2a2−14a−a+7=0⇒1a(a−7)−1(a−7)=0a=12 or 7,given a>1∴a=7also, P lies on curve∴b=∫a0(2t2−15t+10)dtb=∫70(2t2−15t+10)dt6b=−413∴|a+6b|=406