If the numbers x,y,z are in H.P then √yz√y+√z,√xz√x+√z,√xy√x+√y are in
x,y,z are in HP
⇒1x,1y,1z are in AP
Now, √yz√y+√z+√xy√y+√x=1√1z+√1y+1√1x+√1y
=√1z−√1y1z−1y+√1y−√1x1y−1x
=√1z−√1xd where d=1z−1y=1y−1x
=√1z−√1x12(1z−1x)
=2(1√1z+√1x)
=2√xz√x+√z
∴√yz√y+√z+√xy√y+√x=2√xz√x+√z
∴ terms are in AP.