If the observations 3, 5, 7, 4 have frequencies x, x+4, x-3, x+8 respectively and mean of these observations is 4, then find the value of 'x'.
Given:
xi3574fixx+4x−3x+8
∴∑xifi=3x+5(x+4)+7(x−3)+4(x+8) =3x+5x+20+7x−21+4x+32 =19x+31 …(i)
and ∑fi=x+x+4+x−3+x+8 =4x+9 …(ii)
Given, mean = 24
⇒∑fixi∑fi=4From Eqs. (i) and (ii)19x+314x+9=4
⇒19x+31=16x+36⇒3x=5∴ x=53