The correct option is
A 1Let
A=z1,B=z2 and
C=z3, where A,B,C are vertices of equilateral triangle.Given that third point C is origin, so z3=0.
Let z2−z3=α,z3−z1=β,z1−z2=γ⇒z2=α,−z1=β,z1−z2=γ
∴α+β+γ=z2−z1+z1−z2=0⇒¯¯¯¯α+¯¯¯β+¯¯¯γ=0 ...(1)
Since the triangle is equilateral triangle,
∴BC=CA=AB⇒|(z2−0)|=|0−z1|=|z1−z2|
⇒|α|=|β|=|γ|⇒|α|2=|β|2=|γ|2⇒α¯¯¯¯α=β¯¯¯β=γ¯¯¯γ=k (say)
∴¯¯¯¯α=kα,¯¯¯β=kβ,¯¯¯γ=kγ
Substituting values of ¯¯¯¯α,¯¯¯β and ¯¯¯γ in (1), we get
kα+kβ+kγ=0⇒1α+1β+1γ=0⇒1z2+1−z1+1z1−z2=0
⇒z1(z1−z2)−z2(z1−z2)+z1z2z1z2(z1−z2)=0⇒z21−z1z2−z1z2+z22+z1z2=0
⇒z21+z22=z1z2⇒z21z1z2+z22z1z2=1⇒z1z2+z2z1=1
⇒AB+BA=1.