If the origin is the centriod of the triangle PQR with vertices P(2a, 2, 6), Q(−4, 3b, −10) and R(8, 14,2c), then find the values of a, b, and c.
Here P(2a, 2, 6), Q(−4, 3b −10) and R(8, 14, 2c) are vertices of triangle PQR.
∴ Coordinates of centriod of ΔPQR is
(2a−4+83,2+3b+143,6−10+2c3)
= (2a+43,3b+163,2c−43)
But is it given that coordinates of centriod is (0,0,0)
∴ 2a+43=0 ⇒ 2a+4=0 ⇒ a=−2
3b+163=0 ⇒ 3b+16=0
⇒ b=−163
2c−43=0 ⇒ 2c−4=0 ⇒ c=2.