P(2a,2,6),Q(−4,3b,−10),Q(8,14,2c)(0,0,0)=(2a−4+83,2+3b+143,6−10+2x3)⇒a=−2,b=−163,c=2
If the origin is the centriod of the triangle PQR with vertices P(2a, 2, 6), Q(−4, 3b, −10) and R(8, 14,2c), then find the values of a, b, and c.
If the origin is the centroid of the triangle with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), find the values of a,b and c. Also, determine the value of a2+b2−c2.