If the origin is the centroid of the triangle PQR with vertices P(2a,2,6),Q(−4,3b,−10) and R(8,14,2c), then find the values of a,b and c
Open in App
Solution
The coordinates of the centroid of △PQR =(2a−4−83,2+3b+143,6−10+2c3)=(2a+43,3b+163,2c−43) It is given that origin is the centroid of △PQR ∴(0,0,0)=(2a+43,3b+163,2c−43) ⇒2a+43=0,3b+163=0and2c−43=0 ⇒a=−2,b=−163 and c=2