If the origin is the centroid of the triangle with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), find the values of a,b and c. Also, determine the value of a2+b2−c2.
Coordinates of the centroid of △ PQR = (2a−4+83,2+3b+143,6−10+2c3)
[∵coordinate of centroid=(x1+x2+x33,y1+y2+y33,z1+z2+z33)]
= (2a+43,3b+163,2c−43)
∴(0,0,0)=(2a+43,3b+163,2c−43)
⇒2a+43=0,3b+163=0 and 2c−43=0[∵centroid of origin = (0, 0, 0)]
⇒2a+4=0,3b+16=0 and 2c−4=0
⇒a=−2,b=−163 and c=2
∴a2+b2−c2=(−2)2+(−163)2−(2)2 = 4+2569−4=2569