If the pth,qth and rth terms of a G.P. are a, b and c respectively, Prove that aq−1br−pcp−q=1
Lrt A be the first term and R be the common ratio of given G.P
∴ap=a⇒ARp−1=a......(1)
aq=b⇒ARq−1=b......(1)
ar=c⇒ARr−1=c......(1)
Now, aq−1,br−p,cp−q
= (ARp−1)q−1.(ARq−1)r−p.(ARr−1)p−q
=Aq−rR(p−1)(q−1).Ar−pR(q−1)(r−p).Ap−q.R(r−1)(p−q)
= Aq−r+r−p+p−q.Rpq−pr−q+r+qr−pq−r+p+pr−qr−p+q
= A∘.R∘=1.1=1
Thus, aq−r.br−p.cp−q=1